LOS STAPHYLINIDAE (COLEOPTERA) DEL PARQUE NACIONAL DE LAS TABLAS DE DAIMIEL, CIUDAD REAL (ESPAÑA)

RAIMUNDO OUTERELO*, PURIFICACIÓN GAMARRA* Y ANA ARANDA*

RESUMEN

Este trabajo es el resultado del estudio de los coleópteros estafílfidos recogidos durante un año (agosto de 1986 a julio de 1987) en el Parque Nacional de las Tablas de Daimiel, Ciudad Real.

Se realizaron un total de 72 muestras en seis medios de los más representativos de las Tablas, caricazal de Phragmites communis, caneyes de Tamarix gallica, masegar de Cladium mariscum, espadañas de Typha latifolia, sosa de Salsola sp. y de la gramínea Cryptpsis heliodora.

Se estudiaron 53 especies, pertenecientes a 7 subfamilias.

Según la afinidad de las especies por los diferentes medios, las agrupamos en cinco categorías, características (C, con 6 especies), generalistas (G, con 3 especies), subgeneralistas (SG, con 9 especies), preferentes (P, con 14 especies) y accidentales (A, con 21 especies).

Por la abundancia de las especies en cada medio se establecen cinco rangos, superabundantes (Sp, con 1 especie: Carabinae Trigonia exiguus, abundantes (Ab, con 7 especies), Comunes (Co, con 6 especies), raras (Ra, con 18 especies) y muy raras (Mr, con 21 especies).

Según la abundancia y actividad de los adultos de las especies a lo largo del ciclo anual, los seis medios los agrupamos en tres categorías, categoría I con actividad continua a lo largo del año, incluye los medios con el mayor número de especies e individuos, Phragmites y Tamarix; categoría II, cuando la actividad es continua entre 9-11 meses, incluye otros dos medios, Typha y Cladium y la categoría III, cuando la actividad se reduce a seis meses, incluye los medios Cryptpsis y Salsola.

De cada uno de los medios se presentan sus características ecológicas y se indican las especies más abundantes y la actividad anual.

De las 53 especies estudiadas, 5 colonizan todos los medios, pero con predominio en dos, Phragmites y Typha y 15 especies las consideramos muy raras y muy poco frecuentes. Este hecho puede indicar que estamos en una regresión de los medios muestrados por una fuerte presión ambiental, causada en este caso por los niveles de las inundaciones.

De acuerdo con las valencias ecológicas las especies se ajustan a 13 tipos, comportándose 36 especies como fitodetríticas, 15 como humícolas, 20 como higrófilas-tipícolas, 9 como xerófilas, 7 como pantomófilas y 3 como limícolas, como grupos más predominantes.

* Biología Animal I (Zoología-Entomología). Facultad de Biología. Universidad Complutense de Madrid. 28040 Madrid. E-mail: outere@bio.ucm.es.

Recibido: 31/01/00.
Aceptado: 03/02/01.
Las especies aparecen y se sustituyen a lo largo de todo el año, con una mayor actividad entre otoño y primavera.

Mediante el Índice de Similitud o de afinidad de Sokal & Sneath, los medios más semejantes son Phragmites y Typha y los que presentan la menor semejanza con Tamarix y Cryptis.

El medio con la mayor diversidad específica es Tamarix y el de menor Cryptis, en función del Índice de Diversidad de Margalef.

La actividad global de los medios de Las Tablas de Daimiel, como era lógico, está desencadenada cuantitativamente y cualitativamente por el agua.

Este medio palustre constituye una indudable fuente de diversidad y alta productividad biológica. Se deben mantener como tales, para que sigan subsistiendo estos ecosistemas.

Palabras clave: coleóptera, Staphylinidae, ecología, medios palustres, Parque Nacional, Tablas de Daimiel, España.

SUMMARY

This work is the result of the study of the staphilinid collected during a year (August of 1986 to July of 1987) in the National Park of «las Tablas de Daimiel», Ciudad Real.

A total of 72 samples were studied in the six most representative environments of las Tablas de Daimiel, Reed beds of common Reed (Phragmites communis), Saline Tamarix Stands of Tamarix gallica, Fen Sedge beds of Cladium mariscum, Reedmace beds of Typha latifolia, Sosa of Salix alba and of the gramineous Cryptis ichneumoides.

53 species, belonging to 7 subfamilies were studied (Table I). According to the loyalty of the species by the different environments, we group them in five categories: characteristic (C, with 6 species), generalist (G, with 3 species), subgeneralist (SG, with 9 species), preferential (P, with 14 species) and accidental (A, with 21 species).

According to abundance of the species in each environment five ranges were established: superabundant (Sp, with 1 species: Carpelimus (Trogus) exigus), abundant (Ab, with 7 species), common (Co, with 6 species), rare (R, with 18 species) and extremely rare (Mr, with 21 species).

According to the abundance and activity of adults of the species in the annual cycle, we group the six environments in three categories, category I with continuous activity along the year, it includes the environments with the greater number of species and specimens, Phragmites and Tamarix; category II, when the activity is along 9-11 months, it includes other two environments, Typha and Cladium and the category III, when the activity is reduced to six months, it includes the environments Cryptis and Salisola.

For each environment its ecological characteristics were presented. The more abundant species of fauna and the annual total activity were also indicated.

Of 53 studied species, five colonize all the environments, but with predominance in two, Phragmites and Typha. On the other hand we consider 15 species extremely rare and very little frequent. This fact, without other biological data can indicate us that we are in a regression of the environments sampled for a strong environmental pressure, caused in this case by the levels of the floods.

In base to the ecological valencies, the species are adjusted to 13 types. 36 are phytodetrrophic, 15 humicolous, 20 hygrophilic-riparians, 9 xerophilous, 7 psammophilous and 3 limicolous, as dominant groups.
INTRODUCCIÓN

El conocimiento de la riqueza específica y la distribución de la fauna de estafilinidos ibéricos es aún muy fragmentaria, ya que son escasos los trabajos existentes sobre estos coleópteros en conjunto, tratando zonas concretas como: Sierra Nevada (JARRIGE 1954), Sierra del Guadarrama (OUTEREO 1979, GAMARRA 1985), Sierra de Cazorla (OUTEREO 1980), S’Albufera de Mallorca (OUTEREO et al. 1995) y Cuevas del Noroeste de la Península Ibérica (OUTEREO et al. 1998), siendo abundantes las citas esporádicas de localidades o descripciones de nuevas especies.

De zonas palustres epicontinentales, de España, únicamente en el trabajo de VIVAS & VIVAS (1978) sobre carabídos de Aragón, aparecen citadas ocho especies de estafilinidos, como típicos de zonas halobias. Con respecto al Parque Nacional de las Tablas de Daimiel, solamente se conoce un trabajo sobre macroinvertebrados bentónicos (CASADO et al.1996), en el cual lógicamente no hay datos sobre la fauna tratada por nosotros.

Sobre este tipo de medios, en otros países, son destacables los trabajos realizados en Bélgica por JACQUEMART & LELoup (1958a, 1958b) aunque se trata de un estudio detallado de la vegetación y de la fauna, solamente se estudian 22 y 9 especies de estafilinidos, respectivamente.

El Parque Nacional de las Tablas de Daimiel ha estado sometido a agresiones desde la Edad de Bronce, por los asentamientos humanos que allí existieron, y se sabe que desde principios del siglo XIV es zona de caza (BERNIS 1969); hechos que han provocado su deterioro.

Por ello, el objeto del presente trabajo es dar a conocer las especies de estafilíndos recogidos en el Parque Nacional de las Tablas de Daimiel. El estudio de estos coleópteros tiene importancia, ya que muchas especies son indicadoras de las condiciones de calidad de los diferentes medios (BOHÁC 1999; BOHÁC & FUCHS 1991) y las bioformas son diferentes, dependiendo del hábitat que colonizan (MINELLI 1978).

MATERIAL Y MÉTODOS

Zona de estudio

Las Tablas de Daimiel constituyen un medio semiendorreico de carácter subsalino (HÄMILLER 1986), originado por las aguas de los afluen-

tes del Guadiana, Cigüela, Záncara y Riansares que constituyeron en algún momento histórico, una continua laguna más o menos cubierta de una predominante vegetación palustre (figura 1).

A este medio llegan sedimentos salobres cargados con sulfatos y cloruros de los ríos estacionales, Cigüela y Záncara que originan la aparición de comunidades vegetales halófilas, y además reciben aguas dulces y carbonatadas del Azuer, Córcoles y Alto Guadiana. A estos aportes superficiales hay que añadir aportaciones del acuífero subterráneo 23, técnicamente denominado unidad hidrogeológica 04.04, con aguas ligeramente salobres (DE ARANDA et al. 1993). La interpretación de los cambios en la salinidad de las Tablas de Daimiel resulta compleja, dado la importante intervención humana en la gestión de sus aguas, cualitativamente y cuantitativamente. La variabilidad intra-annual es muy grande con acusado aumento durante el periodo estival con el descenso del nivel de las aguas. Correlacionando con la salinidad, el pH medio anual, generalmente entre 7 y 8, experimenta escasas variaciones interanuales, en general, puede decirse que el sistema se encuentra bastante bien ramificado mediante la dinámica del equilibrio carbónico-carbonato (ARAUJO et al. 1996).

Fig. 1. Localización geográfica del Parque Nacional de las Tablas de Daimiel, Ciudad Real, España. A-B situación del transecto con los medios muestrados, representados en la figura 4. [Geographic location of National Park of the Tablas de Daimiel, Ciudad Real, Spain. A-B Transect placement with sampled environments scheduled in Figure 4.]
Geológicamente, las Tablas de Daimiel se asientan sobre la gran fosa Paleozoica mesetaria, rellena mayoritariamente por sedimentos miocénicos y mesozoicos (margas y yesos) que han salinizado los terrenos de cotas más inferiores (YEBENES et al. 1977; PORTA 1975). Esto condiciona fundamentalmente la vegetación halófila (PASCUAL TERRATS 1976) que cubre estos terrenos con suelos hidromorfológicamente inadentaciones prolongadas.

Su climatología es del tipo templado frío continental, caracterizado por los marcados contrastes térmicos diarios y estacionales (invierno y verano), escaso promedio anual de precipitaciones, poco más de 400 mm/año y marcado estiaje entre junio y septiembre (ÁLVAREZ COBELAS & VERDUGO 1996). Las máximas precipitaciones tienen lugar en otoño e primavera (figura 2).

Para la elaboración del diagrama climático se tomaron las temperaturas y las precipitaciones recogidas en Ciudad Real por el Instituto Nacional de Meteorología desde el año 1961 a 1990 (LOPEZ-CAMACHO et al., 1996) (figura 3).

Las diferentes comunidades vegetales que cubre la Tabla de Daimiel condicionan la diversidad de hábitats donde viven las especies de estafílinos y, por ello, los medios muestreados.

Las especies vegetales frente a las cuales se recolectaron las muestras se incluyen en tres comunidades vegetales (figura 4).

1. Matorrales nitrohalófilos, correspondientes a comunidades fruticosas, nitrófilas, gipsófilas, subhalófilas y pobreza florística.

Se realizaron muestreos en el hábitat de Sal-sola verruculata L., esta es una planta con un tamaño entre 10 y 60 cm de altura, conocida.

Fig. 3. Cotas de inundaciones desde 1974 a 1990 con indicación de la entrada en vigor del Plan de Regeneración Hídrica (PRH). (Flow Spots from 1974 to 1990 indicating the entry into force of Water Regeneration Scheme (PRH) (modified from LOPEZ-CAMACHO et al. 1996).)

Fig. 4. Transecto de la vegetación y medios muestreados en las Tablas de Daimiel, con indicación de las características físicas de hidrófilo, nitrófilo, halófilo y materia orgánica. (Vegetation Transect and sampled environments in the Tablas de Daimiel, indicating the physical character of hidrophile, nitrophile, halophile and organic matter.)
como barrilera, pinchos, calamo dulce, sosa, caramillo o carambilla, típica de medios ruderales, con alta nitrofilia, originada por el intenso pastoreo o cultivos cercanos que se desarrolla sobre suelos limosos-arcillosos salobres, perteneciente a la asociación Limonietis dichotomi-Arri- plicetum salini (CIRUJANO 1981). Su biomasa depende del régimen de precipitaciones y fenología otopal.

2. Bosques halófilos con soporte arbóreo o arbustivo, incluidos en la asociación Agresto stomiferat-Tamaricietum tamaricis (CIRUJANO 1981), que caracteriza suelos hídromorfos salobres y nitrificados por el pastoreo.

En esta asociación se muestra en los bosques que constituyen los turayares, turayes, tara- jes, atares, tamarices o tamariscos de Tamarix gallica Willd., que constituyen la climax en suelos húmedos-salinos, que forman galerías en los cursos de agua, o bosquecillos en montículos y diques de arena, con un tamaño entre 1 y 10 metros de altura (ORIA DE RUEDA 1999). Es la única planta arbórea presente de forma natural en el Parque.

Se implantan sobre suelos con cierta materia orgánica y ligera salinidad y relativamente retirada del agua, soportando períodos de inundaciones.

3. Vegetación hídrosila ripícola de las lagunas, representada por dos comunidades que predominan paisajísticamente en las Tablas de Daimiel. Constituida por los cañaverales y los maseigares.

Los cañaverales forman masas de vegetación densa de hasta 2-6 metros de altura, pertene- cen a la asociación Typho-Scirpetum tabernatii (Br.-Bl. & O. Bolós 1957) que caracteriza suelos compactos, arcillosos-limosos, hídromorfo y rico en materia orgánica. Su fenología va paralela al encaramiento y contenido en sales edáficas y en amplia expansión a consecuencia de incendios y sequía (CIRUJANO 1980, 1996).

Se muestra el hábitat de dos especies, Phragmites communis L., que forma el carrizo, caña borde, cañena, cañavera o cañeta, aparece en depresiones, bordeando, por ello, los cursos de agua. Se implantan sobre sustrastras esencialmente húmedos o semi- húmedos por la capacidad de sus raíces de anclar masas flotantes incluso de otras plantas, cerca de las orillas y desde donde avanza hacia el agua. (FOCARILE 1989), este hecho hace que esté en amplia expansión y Typha latifolia L., que forma los espadañas, aceñas, aneas, canas o bayona, alcanzando hasta 1,5 metros de altura se localiza en las riberas de los cursos de agua.

El maseiglar es constituido por las especies deno- minadas castañuelas (ORIA DE RUEDA 1999), Clad- ium mariscus (L.) de 0,8 a 2 metros de altura. (CIRUJANO 1980), incluida en la asociación Son- cho maritimi-Cladietum maris (Br.-Bl. & O. Bolós 1957) que caracteriza suelos higrohalófilos, someti- tidos a una inundación prolongada, incluso duran- te todo el año, formando cepellones sobre los que se precipitan las sales. Constituye las comunidades más representativas del parque y el mayor en extensión de Europa occidental y en relevan- te retroceso, debido a los dos principales avatares, la sequía tanto climática como por la extracción de agua para regadíos y los incendios, que actúan casi de continuo en las Tablas de Daimiel (CIRU- JANO 1996), por lo que va cediendo territorio a otras especies palustres, más cosmopolitas y menos exigentes, como los cañaverales y espa- dañales. Estos fenómenos son los motivos por la daimielización (REYERO 1991).

Este medio se presenta formando montículos de hasta unos 25 cm, con unas características determinantes de una fauna muy especializada en estratos. Cada uno de los montículos tiene un microclima interno, con al menos tres estratos térmicos desde la superficie más externa y la del agua, que es absorbida hacia la parte más alta, por medio de sus raíces y restos de la vegetación acumulada en los montículos. Se detectan variaciones circadianas en las partes más superficiales. Estos montículos se culminan con musgos y estratos limosos orgánicos flotantes de las aguas, que favorecen la aparición de la fauna estratificada en función de la profundidad (FOCARILE 1989).

Además de estas especies freacional, se mues- treó la gramínea Cryptis sphenoides herbácea con una altura de 10 a 40 cm muy extendida en las
Tablas de Daimiel, que se encuentra repartida entre otras plantas.

Metodología

Con el fin de homogeneizar al máximo los muestreos, se delimitaron en función de la vegetación los medios más representativos y predominantes de las Tablas de Daimiel, se muestrearón hojarascas de cinco especies de plantas típicas (Figura 4): *Cladium mariscum*, *Phragmites communis*, *Salsola vermiculata*, *Tamarix gallica* y *Typha latifolia*. Se recogían muestras con una capacidad de cinco litros, con una periodicidad mensual durante un año, desde agosto de 1985 hasta julio de 1987. Las muestras consistían en recoger las hojarascas de las plantas elegidas y en la capa mineral sobre la que se depositó, técnica apropiada para la recogida tanto de fauna epifítica como de la edáfica (Blanes 1990). El muestreo de *Cryptis scrobiculata* consistió en recoger cinco inflorescencias por mes.

De cada una de las muestras se extrajeron los ejemplares, empleando el método Berlese-Tullgren modificado. Posteriormente se emplearon las técnicas de estudio habituales en entomología, se estudiaron los edagosis de todos los machos y las espermatoides en caso necesario.

Los ejemplares estudiados para la realización de este trabajo quedan depositados en la Colección del Departamento de Biología Animal I (Zoología-Entomología), Facultad de Biología de la Universidad Complutense de Madrid (UCM).

Los medios de vegetación palustre se pudieron muestrear por la situación tan crítica que afectó al Parque en el año 1986, al secarse el río Guadiana aguas arriba de las Tablas de Daimiel, quedando prácticamente secas durante todo el año (De Aranda et al. 1993). Esto permitió muestrear medios como el masiegare que, en otros años, habitualmente está cubierto por el agua.

Con estas muestras se puede delimitar las preferencias halófilas, higrófilas y de materia orgánica de las diferentes especies de estafilínicos que se recogen.

Para analizar la diversidad de los medios, de entre los diversos índices de diversidad, propuestos por diferentes autores (Marrugan 1989; Baev &

Penev 1993) utilizamos el Índice de Margalef ($I_m = S-1/ln(N)$), donde se tiene en consideración el número de especies (S) y el de individuos (N). Se trata de un Índice a de diversidad que nos indica la riqueza de especies de un medio.

Para el estudio de la semejanza entre los seis medios, utilizó el índice de similitud o de afinidad, de Sokal & Sneath (1963) que mediante la fórmula $U = C/(C + A + B)$, que tiene en consideración el número de especies comunes en ambos medios (C) y el número de cada uno de ellos (A, B) y con el que realizamos un análisis de agrupamiento de tipo UPGMA (Marrugan 1989; Baev & Penev 1993).

RESULTADOS

Inventario faunístico

Del total de las 72 muestras recogidas, 12 en cada uno de los seis ambientes estudiados a lo largo de un ciclo anual (agosto de 1986 a julio de 1987), se recogieron un total de 1.018 ejemplares, pertenecientes a 53 especies incluidas en 7 subfamilias, que se representan ordenadas sistemáticamente en la tabla 1. El número de muestreos, ejemplares, tanto machos como hembras de cada uno de los medios, se detalla en los Apéndices (I-VI).

Distribución espacial

En función del comportamiento ecológico de fidelidad de las 53 especies de estafilínicos por los seis ambientes considerados en las Tablas de Daimiel, éstas pueden agrupar en cinco categorías (tabla 1).

1. Características (C), indicadoras o permanentes, constituidas por especies exclusivas de un solo medio, siempre que se presenten con una frecuencia y abundancia superiores a valores unitarios. A esta categoría pertenecen seis especies: *Xantholinus (Xantholinus) morandi*, *Gyrophynus (Gyrophynus) wagneri*, *Othius punctulatus*, *Tachinus flavolimbatus*, *Myctetopus baudieri*, *Conostoma cavicola*.

Todas son características del mismo medio, *Tamarix gallica*, como consecuencia de ser el
<table>
<thead>
<tr>
<th>ESPECIES</th>
<th>F</th>
<th>AB</th>
<th>Cladium mariscus</th>
<th>Phragmites communis</th>
<th>Salix terminalis</th>
<th>Salix gallica</th>
<th>Typha latifolia</th>
<th>Cryptps albaoides</th>
<th>TOTAL</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. HYPOPHYTINAE</td>
<td></td>
</tr>
<tr>
<td>1. Hyphophyes minima</td>
<td>A</td>
<td>Mr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Hyphophyes truncata</td>
<td>A</td>
<td>Mr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. ALEOCHARINA</td>
<td></td>
</tr>
<tr>
<td>1. Oreagio pala</td>
<td>P</td>
<td>Co</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>13</td>
<td>5</td>
<td>14</td>
<td>1,37</td>
<td></td>
</tr>
<tr>
<td>4. Hythameria attenuata</td>
<td>A</td>
<td>Mr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,09</td>
<td></td>
</tr>
<tr>
<td>3. Arctina pyraris</td>
<td>A</td>
<td>Mr</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1,09</td>
<td></td>
</tr>
<tr>
<td>6. Arctina forgi</td>
<td>SG</td>
<td>Ab</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>44</td>
<td>2</td>
</tr>
<tr>
<td>7. Arctina forgi var. arctica</td>
<td>A</td>
<td>Ra</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8. Domitera pyraria</td>
<td>P</td>
<td>Ra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0,99</td>
</tr>
<tr>
<td>9. Domitera frigida</td>
<td>SG</td>
<td>Co</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>10. Domitera carya</td>
<td>SG</td>
<td>Co</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11. Hydrometa fluvialis</td>
<td>SG</td>
<td>Ab</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>12. Albertina (Charadra) longicornis</td>
<td>A</td>
<td>Mr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13. Oxytus (Fulmaria) inula</td>
<td>G</td>
<td>Ab</td>
<td>5</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>14. Oxytus (Domitera) vestita</td>
<td>SG</td>
<td>Ab</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>15. Oxytus (Sphenora) Aburomiu</td>
<td>G</td>
<td>Ab</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>16. Erythis desman</td>
<td>A</td>
<td>Mr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. STAPHYLININAE</td>
<td></td>
</tr>
<tr>
<td>17. Oxygynus (S. t. rupicola)</td>
<td>A</td>
<td>Mr</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,09</td>
</tr>
<tr>
<td>18. Oxygynus (S. t. sociabilis)</td>
<td>A</td>
<td>Mr</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,09</td>
</tr>
<tr>
<td>19. Oxygynus (S. t. socialis)</td>
<td>A</td>
<td>Ra</td>
<td></td>
<td></td>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>20. Hygrotellus distisae</td>
<td>A</td>
<td>Ra</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>8,78</td>
</tr>
<tr>
<td>21. Parnassius (S. t. arcticus)</td>
<td>A</td>
<td>Mr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Calytrix prionista</td>
<td>P</td>
<td>Ra</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>23. Phloeocerus (L.) dominus</td>
<td>A</td>
<td>Mr</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,09</td>
</tr>
<tr>
<td>24. Xantholinus (S. t. antennatus)</td>
<td>C</td>
<td>Mr</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>25. Xantholinus (Parnassius) perugiae</td>
<td>P</td>
<td>Ra</td>
<td></td>
<td></td>
<td>1</td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. Xantholinus (L.) nemoralis</td>
<td>A</td>
<td>Ra</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27. Gymnophyes (S. t. nigeri)</td>
<td>C</td>
<td>Co</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,27</td>
</tr>
<tr>
<td>28. Ophius punctatus</td>
<td>C</td>
<td>Ra</td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>29. Ophius punctatus</td>
<td>A</td>
<td>Mr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. PAEDERINAE</td>
<td></td>
</tr>
<tr>
<td>30. Cryptocerus distisae</td>
<td>A</td>
<td>Mr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31. Parnassius (S. t. socialis)</td>
<td>P</td>
<td>Ra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32. Hygrotellus distisae</td>
<td>A</td>
<td>Mr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33. Hygrotellus distisae</td>
<td>SG</td>
<td>Ra</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>34. Staphylinus (S. t. sociabilis)</td>
<td>SG</td>
<td>Co</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>V. GAMALINAE</td>
<td></td>
</tr>
<tr>
<td>35. Omalium sacer</td>
<td>P</td>
<td>Mr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI. OXYTINAE</td>
<td></td>
</tr>
<tr>
<td>36. Aneurus (S. t. leucus)</td>
<td>SG</td>
<td>Ra</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>37. Polyrhynchus (S. t. femorius)</td>
<td>A</td>
<td>Mr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38. Platybacis (S. t. crassus)</td>
<td>P</td>
<td>Ra</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39. Blastos (S. t. griseus)</td>
<td>P</td>
<td>Ab</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>27</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40. Carpotinus (Distichus) nigricans</td>
<td>G</td>
<td>Sp</td>
<td>8</td>
<td>68</td>
<td>12</td>
<td>307</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>41. Carpotinus (Distichus) nigeri</td>
<td>P</td>
<td>Ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42. Carpotinus (Distichus) nigricans</td>
<td>SG</td>
<td>Ra</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>43. Carpotinus (Distichus) distisae</td>
<td>P</td>
<td>Ra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII. STENINAE</td>
<td></td>
</tr>
<tr>
<td>44. Stenus (S. t. leucus)</td>
<td>A</td>
<td>Mr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45. Stenus (S. t. leucus)</td>
<td>A</td>
<td>Mr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46. Stenus (S. t. leucus)</td>
<td>P</td>
<td>Mr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLA 1 (continuación)

INVENTARIO DE ESPECIES EN CADA UNO DE LOS DIFERENTES MEDIOS.

[INVENTORY OF SPECIES IN EACH ENVIRONMENT]

<table>
<thead>
<tr>
<th>ESPECIES</th>
<th>P</th>
<th>AB</th>
<th>Cladium maritimum</th>
<th>Phragmites communis</th>
<th>Salvadora termirculata</th>
<th>Tamarix gallica</th>
<th>Typha latifolia</th>
<th>Cryptis silvestris</th>
<th>TOTAL</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>M</td>
<td>I</td>
</tr>
<tr>
<td>VIII. TACHYPORINAE</td>
<td></td>
</tr>
<tr>
<td>47. Tachyporus curvibranchiatus</td>
<td>P</td>
<td>Mr</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>48. Tachyporus (sub)hyporrea</td>
<td>P</td>
<td>Mr</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>49. Tachyporus (sub)maialis</td>
<td>P</td>
<td>Ab</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>33</td>
</tr>
<tr>
<td>50. Tachyporus flavomarginatus</td>
<td>C</td>
<td>R</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>51. Myrprurus linderi</td>
<td>C</td>
<td>R</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>52. Sphylodius pohorensis</td>
<td>A</td>
<td>Mr</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>53. Sphylodius carinata</td>
<td>C</td>
<td>Ea</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

A: Especies accidentales o ocasionales.
Ab: Especies abundantes.
Ar: Capacidades de las abundancias de las especies.
Cr: Especies comunes.
P: Características de las especies por los diferentes medios.
G: Especies generalistas e indiferentes.
I: Número de individuos.
M: Número de muestras.
Mr: Especies muy raras.
P: Especies preferentes o preferenciales.
Re: Especies raras.
SG: Especies subgeneralistas.
Sp: Especies superabundantes.

2. Generalistas (G) o indiferentes, formadas por especies oportunistas o ubiquistas con amplias valencias ecológicas que les permite ocupar todos los ambientes. Son consideradas, por tanto, en esta categoría aquellas especies que se presentan en el 100% de los medios. Pertenece a esta categoría tres especies: *Oxyopa (Podocarpus) indica, Oxyopa (Sphenoeca) abdonalis*, y *Carpelimus (Trogirina) eucarpos*.

3. Subgeneralistas (SG), son considerados de esta categoría aquellas especies que aparecen en cinco o cuatro ambientes. Se incluyen nueve especies. En cinco medios: *Acrotona fungii, Dimetatra livida, Dimetatra lewinae, Hymemetata fluviatilis, Oxyopa (Demotoma) steineri, Sphenoeca (Hyphocephalus) minimus*. En cuatro medios: *Hymedon propinquus, Anotylas (Anastylus) inustus, Carpelimus (Harpelimus) punctipennis*.

4. Preferentes o preferenciales (P), consideradas como tales aquellas especies que aparecen en tres o dos medios. Son de esta categoría 14 especies. En tres medios: *Bledius grallii, Carpelimus (Carpelimus) foventolus, Carpelimus (Parabolopus) nitidus, Platystachys cornutus, Tachyporus (Tachyporus) pusillus*. En dos medios: *Oligota pura, Dimetatra piscipennis, Stenus (Parastenus) elegans, Tachyporus (Tachyporus) abdonalis, Gabrius primigenius, Xantholius (Parroldinus) jarrigeli, Lthria nigritula, Pseudomedon (Pseudomedon) obsclaretum* y *Onthizus caesiurn*.

5. Accidentales (A) o ocasionales, consideramos en esta categoría las 21 especies restantes, que aparecen en ocasiones en alguno de los seis ambientes estudiados, por lo que no las podemos considerar como miembros permanentes o característicos de la comunidad, pero aparecen con una abundancia muy baja, con uno o dos ejemplares por muestra.

Además de la presencia de las especies en cada uno de los medios, éstas presentan una abundancia determinada en función de la cual podemos considerar los siguientes rangos (tabla 1):

1. Superabundante (Sp), con una sola especie cuya abundancia relativa es del 55,81% y
absoluta de 569 individuos, se trata de Carpelmus (Trogon) exigua, comportándose como generalista (tabla 1).

2. Abundantes (Ab), con valores de abundancia relativa entre el 5,20% y el 2,55% y absoluta entre 53 y 26 individuos respectivamente. En este rango se incluyen siete especies, Oxyypoda (Spheoma) abdominalis, Oxyypoda (Pagoda) induta, que se comportan como generalistas; Acrotona longifus, Oxyypoda (Pagoda) steineri, con comportamientos subgeneralistas; Bladius (Bledius) gracilis, Carpelmus (Carpelmus) fusocelatus, Tachyporus pusillus, como preferentes (tabla 1).

3. Comunes (Co), cuando la abundancia relativa queda comprendida entre el 1,57% y el 0,98% y absoluta entre 16 y 10. Nos encontramos seis especies, Dimetrotro livida, Dimetrotro lativista, Sophaea (Hypophaea) minimus, con comportamientos subgeneralistas; Oligota parva, como preferentes y Gyrobyptus (Gyrobyptus) wagneri y Conosoma cajola, como accidentales (tabla 1).

4. Raras (Ra), con especies cuya abundancia relativa queda comprendida entre el 0,88% y el 0,29% y la absoluta entre 9 y 3 individuos. A este rango, corresponden 18 especies, el segundo por el mayor número de especies (tabla 1).

5. Muy raras (Mr), cuando su abundancia relativa queda ya comprendida entre el 0,09% y el 0,19% y la absoluta entre 1 y 2 individuos. En este se incluyen 21 especies, el rango mejor representado (tabla 1).

Fenología
Con respecto a la abundancia y actividad de los adultos de las especies de estafilínicos a lo largo del ciclo anual se pueden considerar a los seis medios en tres categorías.

1. Categoría I, cuando la actividad de los estafilínicos es continua a lo largo del año. Incluye los dos medios con el mayor número de especies e individuos, Phragmites con 20 especies, 377 individuos (figura 5; Apéndice I) y Tamariax con 39 especies y 242 individuos (figura 6a; Apéndice II).

2. Categoría II, donde se consideran aquellos medios con 8-9 meses de actividad de estafilínicos entre octubre e invierno y una inactividad continua durante 3-4 meses. Incluye
Fig. 7. El musgo de Cladium mariscum. Sucesión anual de especies e individuos totales. [Fen Sedge beds (Cladium mariscum). Annual Succession of species and total specimens.]

Fig. 8. Los espadañas de Typha latifolia. Sucesión de la actividad anual de las especies y ejemplares totales. [Reedmace beds (Typha latifolia). Annual activity Succession of species and total specimen.]

Fig. 9. El medio Cryptis schreiberi. Sucesión de la actividad anual de las especies y ejemplares totales. [Cryptis schreiberi environment. Annual activity Succession of species and total specimen.]

Fig. 10. El medio Salix vermiculata, sucesión de la actividad anual de las especies y ejemplares totales. [Salix vermiculata environment, annual activity Succession of species and total specimen.]

3. Categoría III, incluye medios con una actividad de estafillinos a lo largo de seis meses, otoño-invierno y otros seis meses de inactividad, incluye Cryptis con 10 especies y 35 individuos (figura 9; Apéndice V) y Salix con 13 especies y 34 individuos (figura 10; Apéndice VI). Representan los dos medios con el menor número de especies e individuos.

Características faunísticas de los medios estudiados

Phragmites communis

Es el medio donde aparece el mayor número de individuos, un total de 377, el 37,03%, correspondientes a 21 especies, el 38,46% del total, comportándose como generalistas 2, subgeneralidades 10, preferentes 7 y como accidentales 2. El valor de su índice de diversidad de Margalef es 3,37 correspondiendo al cuarto medio en riqueza de especies, lo que indica una riqueza media.

Las especies más abundantes son, Carpelimus (Traginis) exigus con 307 individuos, el 81,43% y Bledius (Bledius) graellsi si bien con una representación muy baja, el 7,16% (Apéndice I).

La primera de estas especies, Carpelimus (Traginis) exigus, presenta una actividad de adultos con tres máximos, los dos más importantes en agosto y noviembre y el tercero en enero-febrero con la mitad de individuos de los anteriores. Durante los cinco meses restantes, marzo-julio, se mantiene relativamente baja.
La actividad conjunta de todas las especies en este medio la consideramos dentro de la Categoría I, continua, que se solapa por completo con la actividad de la especie Carpelinus (Troginus) exigus, con tres incrementos en el número de individuos correspondientes a los meses de enero-febrero, noviembre y en agosto (figura 5).

Tamarix gallica

Constituye el segundo medio por el número de individuos, 242, el 23,77%, pero el primero por el número de especies, 39, el 76% del total, comportándose como características 6 (único medio donde aparece esta categoría de especies), generalistas 3, subgeneralistas 8, preferentes 7 y accidentales 15 (Apéndice II). Su índice de diversidad de Margalef es de 6,93, correspondiendo al medio con mayor valor, por tanto, es que presenta mayor riqueza de especies.

Las generalistas son Acrotoma fungi, con el 18,18%, Tachyphorus pusillus, el 12,40% y Carpelinus (Troginus) exigus con el 9,92%.

La actividad de los adultos de estas especies sigue patrones diferentes, A. fungi y Carpelinus (Troginus) exigus, presentan un máximo en otoño, mientras que Tachyphorus pusillus lo presenta a principio del verano (figura 6a y 6b).

La actividad de la especie más representativa Carpelinus (Troginus) exigus, presenta un desfase en comparación con la del medio Phragmites. La actividad conjunta de las especies corresponde a la categoría I, continua con 4 máximos, uno en septiembre, originado por el incremento poblacional de la especie Acrotoma fungi, el segundo en noviembre que sobrepasa el anterior, causado por la especie Carpelinus (Troginus) exigus, la causante a su vez del tercero, que ocurre en marzo y el cuarto máximo tiene lugar en julio y está originado por la especie, Tachyphorus pusillus (figura 6 b).

La variación estacional de especies presenta dos inflexiones en abril y junio, pero si hay varios incrementos en el número de individuos, septiembre, de noviembre a marzo, mayo y otro en julio (figura 6a).

Cladium mariscus

En este medio se recogieron 123 ejemplares, el 12,08%, pertenecientes a 12 especies, el 34,61%, comportándose como generalistas 1, subgeneralistas 9, preferentes 5 y accidentales 2 (Apéndice IV). El valor del índice de diversidad de Margalef es de 3,53, el segundo en riqueza específica.

Las más representativas son, Carpelinus (Troginus) exigus, el 55,28% y Oxypoda (Podoxya) induta, el 12,19%, ambas típicas de nichos limosos. La actividad de la primera de las especies coincide con la global del medio, con dos máximos, uno en diciembre-enero y un segundo más relevante en marzo-abril, incluida en la categoría II. No se aprecia variación estacional en el número de especies (figura 7).

Typha latifolia

Se recogieron en este medio 207 ejemplares, el 20,33%, correspondientes a 18 especies comportándose como generalistas 3, subgeneralistas 8, preferentes 6 y como accidentales una (Apéndice III). Su índice de diversidad de Margalef presenta un valor de 3,18, correspondiendo al penúltimo medio en riqueza específica.

Las especies más representativas son Carpelinus (Troginus) exigus, el 70,53% y Carpelinus (Carpelinus) foveolatus, con el 8,69%.

La actividad de las especies de este medio corresponde a la categoría II, siguiendo la que presenta la especie Carpelinus (Troginus) exigus, que es la causante de tres máximos de individuos de...
TABLA 2
SUCESSION DE LAS 53 ESPECIES Y TOTALES DE INDIVIDUOS, EN CADA UNO DE LOS MESES DEL AÑO.
[SUCCEDION OF ALL 53 SPECIES AND WHOLE SPECIMENS FOR EACH MONTH OF YEAR]

<table>
<thead>
<tr>
<th>Meses</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>40</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>6</td>
<td>13</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>10</td>
<td>14</td>
<td>6</td>
<td>7</td>
<td>24</td>
<td>16</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>13</td>
<td>17</td>
<td>8</td>
<td>14</td>
<td>27</td>
<td>20</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>14</td>
<td>34</td>
<td>13</td>
<td>19</td>
<td>38</td>
<td>21</td>
<td>13</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>15</td>
<td>39</td>
<td>14</td>
<td>20</td>
<td>39</td>
<td>23</td>
<td>14</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>18</td>
<td>40</td>
<td>36</td>
<td>26</td>
<td>40</td>
<td>28</td>
<td>22</td>
<td>13</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>24</td>
<td>20</td>
<td>49</td>
<td>40</td>
<td>27</td>
<td>49</td>
<td>39</td>
<td>23</td>
<td>14</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>27</td>
<td>27</td>
<td>50</td>
<td>49</td>
<td>28</td>
<td>50</td>
<td>40</td>
<td>33</td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>31</td>
<td>31</td>
<td>51</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>33</td>
<td>32</td>
<td>40</td>
<td>30</td>
<td>38</td>
<td>29</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>34</td>
<td>34</td>
<td>45</td>
<td>52</td>
<td>39</td>
<td>30</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>38</td>
<td>37</td>
<td>47</td>
<td>33</td>
<td>40</td>
<td>35</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>39</td>
<td>39</td>
<td>48</td>
<td>41</td>
<td>36</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>40</td>
<td>40</td>
<td>49</td>
<td>42</td>
<td>38</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>41</td>
<td>41</td>
<td>53</td>
<td>43</td>
<td>39</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>42</td>
<td>42</td>
<td>53</td>
<td>40</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>49</td>
<td>43</td>
<td>49</td>
<td>42</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>

Sp. totales | 18 | 18 | 20 | 9 | 10 | 1 | 16 | 10 | 13 | 17 | 20 | 20 |

Ind. totales | 137 | 91 | 177 | 53 | 33 | 1 | 61 | 124 | 83 | 63 | 137 | 56 |

los cuatro que presenta este medio, estos máxi-
mos van creciendo desde agosto, noviembre, ene-
ro hasta marzo. En los máximos de agosto y
noviembre intervienen además las especies, Oxyp-
da induta y Dimetra livida. La variación es
tacional de especies se mantiene casi constante
(figura 8).

 Crypsis schenoides

Se recogieron 35 ejemplares, el 3,44%, correspon-
dientes a 10 especies, el 19,23%, compor-
tándose como generalistas 3, subgeneralistas 3 y
cómo preferentes 4, no existiendo accidentales.
Constituye el medio con el menor número tanto
de especies como de ejemplares (figura 9; Apén-
dice V). El valor de su índice de diversidad de
Marga le es el más bajo, 2,53 y se corresponde al
medio con la menor riqueza específica.

La especie más representativa es Carcelimus (Tro-
ginus) exigua, cuya actividad nos señala la del con-
junto de especies del medio, con tres máximos,
los dos más elevados en octubre y marzo, el ter-
cero, menos importante se presenta en enero. Se
incluye en la categoría III.

Salsola vermiculata

Se recogieron en este medio 34 ejemplares, el
3,34%, correspondientes a 13 especies, el 25%,
comportándose como generalistas 3, subgenera-
listas 6, preferentes 3 y como accidentales 1
(Apéndice VI). Su índice de diversidad de Mar-
gado presentó un valor de 3,40 siendo el tercer
medio en riqueza específica.

La categoría de actividad de especies de este
medio corresponde a la categoría III, con dos mar-
cados máximos, uno en octubre-noviembre ori-
ginado por cuatro especies, Oxyypoda (Podoxyl)
induta, Oxyypoda (Demosoma) steineri, Platystethus
(Platystethus) cornutus y Carcelimus (Troginus) exi-
gua. El segundo máximo ocurre en febrero ori-
ginado principalmente por la especie Acreotona
fungi (figura 10).
TABLA 3

<table>
<thead>
<tr>
<th></th>
<th>Phragmites</th>
<th>Tamarix</th>
<th>Typha</th>
<th>Cladium</th>
<th>Cryptis</th>
<th>Salicola</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phragmites</td>
<td>0.09</td>
<td>0.16</td>
<td>0.15</td>
<td>0.08</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Tamarix</td>
<td>39</td>
<td>9</td>
<td>0.07</td>
<td>0.10</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>Typha</td>
<td>18</td>
<td>18</td>
<td>0.13</td>
<td>0.11</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Cladium</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>0.09</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Cryptis</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Salicola</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Semejanza entre medios

Para el estudio de la semejanza entre los seis medios, se utilizó el índice de similitud de afiliación de Sokal & Sneath (1963). Con sus valores se calculó el dendrograma de similitud (Análisis de Cluster-UPGMA).

Sus valores se representan en la tabla 3 y figura 12, donde se observa que los medios más semejantes entre sí son, Phragmites y Typha, el más distanciado es el medio Tamarix, los tres restantes, Cladium, Salicola y Cryptis, presentan semejanzas intermedias entre sí.

DISCUSIÓN Y CONCLUSIONES

Como ya se ha indicado en la Introducción, los trabajos sobre estaflíminidos y en particular sobre las especies de esta familia de coleópteros en zonas palustres, son muy escasos.

Las especies estudiadas en las Tablas de Daimiel coinciden en su mayoría con las estudiadas tanto en los trabajos pioneros de Jacquemart & Leoup (1958a, 1958b) como las estudiadas en los trabajos concretos sobre estaflíminidos de zonas palustres italianas, con medios iguales al de las Tablas de Daimiel.

De las 53 especies estudiadas hay tres que predominan en todos los medios, una de ellas pertenece a la categoría de superabundante, Carpelinus (Trigynus) exigus, pero con clara preferencia por los hábitats, Phragmites y Typha. En el primer medio aparecen 307 individuos, un número superior al del total de individuos en el conjunto del resto de medios (tabla 1). Estos datos nos podrían confirmar la idea de una regresión de las comunidades sometidas a una fuerte presión ambiental, dado que están formadas por unas pocas especies con estructuras muy simples y fuertes relaciones de
dominancia. La mayorfa de los casos presentan pocas especies dominantes, mientras que el resto de especies constituyen poblaciones accessorias y de presencia esporadica (CASADO et al. 1996).

Ya con menor abundancia y predominio semejante en todos los medios se encontraron dos especies de la categoria abundantes, Oxyoda (Podexy) induta y Oxyoda (Sphenoma) abdominalis (tabla 1).

En cambio, 15 especies las consideramos muy raras, muy poco frecuentes, ya que únicamente aparecen en un muestreo y con un solo ejemplar (tabla 1).

Con independencia de las cinco categorías según las preferencias que sobre los medios presentan las diferentes especies, se puede hacer una aproximación autoecológica de los hábitats que cada especie presenta en su medio. Para establecer las diferentes categorías de hábitat de las especies nos fundamentamos en el trabajo de Vogel (1989) para las especies centroeuropeas y que son comunes en las encontradas en las Tablas de Daimiel.

En función de estas categorías de nichos ecológicos, las 33 especies estudiadas se pueden agrupar en 13 tipos, no excluyentes los unos de los otros pues una especie puede compartir en función de sus valencias ecológicas y disponibilidad de sus recursos, varios hábitats, según sus preferencias por las características por las que se establecen estos tipos. Muchos de ellos son aproximaciones, por desconocerse en muchos casos su biología detallada.

Por la naturaleza del medio donde predomina se presentan 36 especies como fitodetritícolas y 15 como humícolas.

Por el grado de humedad del medio, 20 especies son higrófilas-ripícolas y 9 xerófilas.

Por compactación y naturaleza del suelo, 7 especies se comportan como psammófilas y 3 como limícolas.

Con una menor importancia encontramos especies estercorícolas-coprófagas (6), halobiontes (4), silvícolas (5), poliporícolas-fungícolas (3) y muscícolas (3).

La presencia de las especies, indicada por la actividad de los adultos a lo largo de los meses del año, es elevada y la sucesión es continua (tabla 2, figura 11). El mes con una sola especie y con un solo individuo es junio, a partir del cual el número crece gradualmente hasta alcanzar el máximo en noviembre, manteniéndose hasta marzo, a partir del cual desciende gradualmente hasta junio (figura 11). Sin embargo, el número de ejemplares por meses presenta una estrecha correlación con el número de especies, así el mes con mayor número de individuos corresponde a marzo, con 177, seguido de enero y noviembre con 137 (tabla 2, figura 10). Esta elevada actividad invernal coincide con la encontrada en los macroinvertebrados bentónicos (CASADO et al. 1996).

El medio con el mayor número de individuos es Phragmites, con 377 y el menor es Salix con 34, que no corresponde con el número de especies, que el máximo se presenta en Tamarix con 39 y el de menor número Cryptis, con 10 especies.

El índice de afinidad o similitud de Sokal & Sneath, nos indica que los medios más semejantes entre sí son Phragmites y Typha. Ambos comparten muchas características e incluso se entremezclan entre sí y con el medio Cladium, ya que ocupan medios con las mismas condiciones de hidrofilia, por desarrollarse a orillas del agua, con mucha materia orgánica por la lenta descomposición turbosa y poca nitrofilia (figura 4).

Únicamente el medio con Tamarix se distancia de los restantes, por corresponder a la climax, comportándose como medio refugio para la fauna de los otros medios cuando son inundados por las crecidas de los caudales del agua y se ven obligadas las especies a abandonar el medio que ocupaban. Presenta valores medios de hidrofilia, nitrofilia, halofilia y riqueza de materia orgánica. Por el contrario, en afinidad entre los diferentes hábitats están Cryptis y Salix, en los que predomina la máxima nitrofilia y los valores mínimos de hidrofilia, halofilia y materia orgánica (figura 4).
La diversidad de insectos y en este caso de los coleópteros estafilínicos, se encuentra estrictamente asociada a la complejidad estructural de cada uno de los medios (SOUTHWOOD et al. 1979), que en los humedales es debida a los condicionantes hidrogeoquímicos que determinan las características edáficas y con ellas la composición florística de estos ecosistemas. La mayor diversidad de especies se encuentra asociada a la mayor madurez ecológica y vegetación de freetóficas lenosas, con tendencia gradual del descenso de la diversidad en los medios con predominio de plantas herbáceas (MONTALVO & HERRERA 1993). De los valores hallados, se deduce que la diversidad más elevada corresponde directamente al medio con presencia arbórea, el más maduro y considerado el climax en las Tablas de Daimiel, se trata de Tamarix.

Con valores inferiores a la mitad del anterior le siguen, Cladium, el hábitat más afectado, por las fluctuaciones del nivel del agua (hidrofilia) y calidez del agua del Parque y el hábitat Salsola, típico de suelos salobres (halofilia) y también tan afectado como el anterior e variable en su extensión por el descenso en el nivel del agua y elevado contenido de materia orgánica, que forma montículos estratificados (figura 4).

Los otros tres medios presentan unos valores más bajos, y corresponden a los hábitats de Phragmites, Typha y Cryptis. Los dos primeros se localizan a orillas de cursos de agua, donde se presenta la mayor salinidad y acumulación de materia orgánica turbosa y mínima nitrofilia; Cryptis, con el valor mínimo, es una vegetación herbácea anual, donde únicamente se inmure el parte aérea de la planta, por tanto los factores limitantes meteorológicos influyen directamente y con factores edáficos mínimos en hidrofilia, halofilia y materia orgánica y elevados de nitrofilia (figura 4).

Se sabe que hay una relación inversa entre la diversidad de especies y los gradientes de los factores limitantes edáficos: la salinidad y la alcalinidad, correspondiendo la máxima diversidad de los diferentes medios de los humedales con valores moderados de estos factores, con tendencia creciente de la diversidad para valores mínimos y decreciente para valores máximos (MONTALVO & HERRERA 1993).

Como consideración global los máximos del número de especies coincide con el comienzo y final del período de estiaje, es decir aparecen con los meses de máximas precipitaciones y temperaturas más bajas, que en ningún mes del año es inferior a los 0 °C. Esto parece indicarnos que el factor desencadenante de su actividad depende directamente del factor principal de los medios de los humedales de las Tablas de Daimiel, el agua y con ella la correspondiente concentración de sus solutos (CASADO et al. 1996) (tabla 2, figura 2).

La temperatura como factor climático limitante, posiblemente queda relegado en este caso a un segundo lugar por tratarse de una fauna semiedáfica, humúlica, que al vivir en las capas superiores del suelo, queda protegida de la temperatura, ya que el agua actúa como moderador de este factor (COIFFAIT 1958; GOBAT et al. 1998). Este fenómeno justifica el predominio del número de especies y ejemplares en las épocas invernales, con precipitaciones más abundantes y temperaturas incluso bajas.

Los humedales constituyen un elemento que contribuye sustancialmente a incrementar la diversidad espacial en ambientes mediterráneos, que contribuyen al incremento de la biodiversidad del paisaje y como consecuencia una mayor riqueza de especies por unidad de superficie de los medios, que conlleva una alta productividad ecológica global (CONTARINI 1995; REYERO 1990). Su conservación es de reconocido interés (MODENA & OSELLA 1981; CASADO DE OTOLIA & MONTES DEL OLMO 1993) y así es contemplada en el ámbito de los criterios específicos aplicados por la Comunidad Europea (MONTALVO & HERRERA 1993).

Pero este interés conservacionista extreme con la creación de «zona de reserva» que se contempla en el reciente Real Decreto 1803/1999 sobre el plan director de la red de parques nacionales, nos puede conducir a la pérdida de la biodiversidad funcional como la recientemente puesta de manifiesto en el área estrictamente protegida del bosque de Fontainebleau, París, comparada con áreas más frecuentadas por el hombre (BRUNEAU DE MIRÉ 1999).

Como conclusión global destacamos la necesidad de llevar a cabo estudios integrales de las

La conservación del Parque Nacional de las Tablas de Daimiel, como bien dice su actual Director Conservador (CARRASCO REDONDO 2000), «no debería ser un conflicto entre intereses económicos y conservacionistas, sino la garantía y el símbolo de la explotación racional y sostenible de un recurso escaso renovable, tan vital para todos, como es el agua».

AGRADECIMIENTOS

A doña Ángeles Blanes por la recolección y separación minuciosa del material, a don Eduardo Ruiz y don José M. Hernández, miembros del departamento de Biología Animal I (Entomología), por la ayuda técnica que nos han prestado en todo aquello que hemos necesitado, y al evaluador, por el interés en leer y corregir los fallos originales del manuscrito, a todos ellos gracias por la elaboración definitiva de este trabajo.

REFERENCIAS BIBLIOGRÁFICAS

BERNIS, F. 1969. Las tablas de Daimiel. La Naturaleza 1: 3-10.

"Los Staphylinidae (coleóptera) del Parque Nacional de las Tablas de Daimiel"

RAIMUNDO OUTERELO et al. «Los Staphylinidae (coleóptera) del Parque Nacional de las Tablas de Daimiel»

<table>
<thead>
<tr>
<th>especie</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halicurina platycercus</td>
<td>1</td>
</tr>
<tr>
<td>Halicurina eugeniae</td>
<td>2</td>
</tr>
<tr>
<td>Halicurina lucida</td>
<td>3</td>
</tr>
<tr>
<td>Halicurina montana</td>
<td>4</td>
</tr>
<tr>
<td>Halicurina nigrescens</td>
<td>5</td>
</tr>
<tr>
<td>Halicurina polychroma</td>
<td>6</td>
</tr>
<tr>
<td>Halicurina schinzii</td>
<td>7</td>
</tr>
<tr>
<td>Halicurina similis</td>
<td>8</td>
</tr>
<tr>
<td>Halicurina tricolor</td>
<td>9</td>
</tr>
<tr>
<td>Halicurina variegata</td>
<td>10</td>
</tr>
</tbody>
</table>

Total ejemplares: 1188
<table>
<thead>
<tr>
<th>Tamarris gallica</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>Total ejemplares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypericum ulmifolium</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Oligia purpurea</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Myrtus communis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Arbutus unedo</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Arbutus unedo</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lavandula stoechas</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lavandula stoechas</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quercus (Quercus) nigra</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quercus (Quercus) ilex</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hedera helix</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hedera helix</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Poa annua</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Poa annua</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon (Cynodon dactylon)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cynodon dactylon (Cynodon dactylon)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Plantago dives</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Plantago dives</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>17</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>Total ejemplares</td>
<td>10</td>
<td>29</td>
<td>8</td>
<td>37</td>
<td>20</td>
<td>22</td>
<td>14</td>
<td>28</td>
<td>2</td>
<td>14</td>
<td>0</td>
<td>58</td>
<td>242</td>
</tr>
</tbody>
</table>
APÉNDICE III

INVENTARIO DE ESPECIES DEL MEDIO **_TYPHA LATIFOLIA**_ **CON EL NÚMERO DE EJEMPLARES δ♂ Y ♀♀ Y SUS TOTALES POR ESPECIES Y MESES.**

[SPECIES INVENTORY OF **_TYPHA LATIFOLIA**_ **ENVIRONMENT, WITH SPECIMEN NUMBER δ♂ AND ♀♀, AND TOTAL VALUE FOR SPECIES AND MONTHS.]**

<table>
<thead>
<tr>
<th>Typha latifolia</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>Total</th>
<th>Total ejemplares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydropitya laricinclus</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aronia funghi</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dimorota pseudemis</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dimorota livida</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dimorota lamarca</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hydrocytus fluviatilis</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Oxyposa (Podargus) indeas</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Oxyposa (Desmatis) steineri</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Oxyposa (Sphenos) abdominalis</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gobius primigenius</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Omalium caseum</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Anostis (s.str.) insitans</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Platythetes (s.str.) ernaces</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bledius (s.str.) gracili</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Carpselana (Trogini) exigens</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Carpselana (s.str.) fuscovulans</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Carpselana (s.str.) paravulpens</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Carpselana (Parabolopina) mitidas</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>96</td>
<td>111</td>
</tr>
<tr>
<td>Total ejemplares</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>δ♀</td>
<td>δ♂</td>
<td>207</td>
<td></td>
</tr>
</tbody>
</table>

Conversion to English: *Typha latifolia* Species Inventory with Specimen Numbers (δ♂ and ♀♀) and Total Value for Species and Months.
APÉNDICE IV
INVENTARIO DE ESPECIES DEL MEDIO CLADION MARISCUM, CON EL NÚMERO DE EJEMPLARES ♂ Y ♀ Y SUS TOTALES POR ESPECIES Y MESES.
[SPECIES INVENTORY OF CLADION MARISCUM ENVIRONMENT, WITH SPECIMEN NUMBER ♂ AND ♀, AND TOTAL VALUE FOR SPECIES AND MONTHS.]

<table>
<thead>
<tr>
<th>Cladion mariscum</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>Total</th>
<th>Total ejemplares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accoena funghi</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dimorosia livida</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Dimerosia lamana</td>
<td>0</td>
</tr>
<tr>
<td>Hydrometa fluvatilis</td>
<td>0</td>
</tr>
<tr>
<td>Oxygyna (Podarca) indica</td>
<td>0</td>
</tr>
<tr>
<td>Oxygyna (Dematoma) steineri</td>
<td>0</td>
</tr>
<tr>
<td>Oxygyna (Sphenoma) abdominalis</td>
<td>0</td>
</tr>
<tr>
<td>Quadius (1 str.) simplicifrons</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pseudolam (1 str.) obsoletum</td>
<td>0</td>
</tr>
<tr>
<td>Sphenus (Hypnora sp.) minimus</td>
<td>0</td>
</tr>
<tr>
<td>Asterias (1 str.) inusit</td>
<td>0</td>
</tr>
<tr>
<td>Blephar (1 str.) gracilis</td>
<td>0</td>
</tr>
<tr>
<td>Carpinus (Teugina) exigua</td>
<td>0</td>
</tr>
<tr>
<td>Carpinus (1 str.) punctipennis</td>
<td>0</td>
</tr>
<tr>
<td>Siemens (1 str.) aphelionius</td>
<td>0</td>
</tr>
<tr>
<td>Siemens (Parastenus) elegans</td>
<td>0</td>
</tr>
<tr>
<td>Tachyporras (1 str.) hyponurus</td>
<td>0</td>
</tr>
<tr>
<td>Tachyporras (1 str.) pasillius</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Total ejemplares</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>13</td>
<td>15</td>
<td>5</td>
<td>31</td>
<td>41</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
APÉNDICE V

<table>
<thead>
<tr>
<th>Cripsis schenoides</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>Total ejemplares</th>
<th>Total ejemplares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydromanta flavistilia</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Oxypoda (Peadzeyi) indica</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Oxypoda (Dinamauna) steineri</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Oxypoda (Pheidemis) abdominatia</td>
<td>0</td>
</tr>
<tr>
<td>Hypomero propinquus</td>
<td>1</td>
</tr>
<tr>
<td>Stenurus (Hypocrepans) minimus</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Oenomias centanum</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Carpelinus (Tregemis) exiguus</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>18</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Carpelinus (s.str.) foetalus</td>
<td>1</td>
</tr>
<tr>
<td>Carpelinus (Pseudohipinos) nuditus</td>
<td>1</td>
</tr>
<tr>
<td>Stenus (Parastenus) elegans</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Total ejemplares</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>35</td>
</tr>
</tbody>
</table>
APÉNDICE VI
INVENTARIO DE ESPECIES DEL MEDIO SALSOLA VERMICULATA, CON EL NÚMERO DE EJEMPLARES **♂♂ ** Y ♀♀ Y SUS TOTALES POR ESPÉCIES Y MESES.

(SPECIES INVENTORY OF SALSOLA VERMICULATA ENVIRONMENT, WITH SPECIMEN NUMBER ♂♂ AND ♀♀, AND TOTAL VALUE FOR SPECIES AND MONTHS.)

<table>
<thead>
<tr>
<th>Salsola vermiculata</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>Total ejemplares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acronea pygmaea</td>
<td>♂♂</td>
<td>♂♂</td>
<td>♂♂</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>2</td>
</tr>
<tr>
<td>Acronea funckie</td>
<td>♂♂</td>
<td>♂♂</td>
<td>♂♂</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>2</td>
</tr>
<tr>
<td>Dimetra larvata</td>
<td>♂♂</td>
<td>♂♂</td>
<td>♂♂</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>2</td>
</tr>
<tr>
<td>Oxyopa (Pediopa) indica</td>
<td>♂♂</td>
<td>♂♂</td>
<td>♂♂</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>2</td>
</tr>
<tr>
<td>Oxyopa (Dendroara) steineri</td>
<td>♂♂</td>
<td>♂♂</td>
<td>♂♂</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>2</td>
</tr>
<tr>
<td>Oxyopa (Sphenoara) abdominalis</td>
<td>♂♂</td>
<td>♂♂</td>
<td>♂♂</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>2</td>
</tr>
<tr>
<td>Latze nigritaule</td>
<td>♂♂</td>
<td>♂♂</td>
<td>♂♂</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>2</td>
</tr>
<tr>
<td>Hypom reloadData</td>
<td>♂♂</td>
<td>♂♂</td>
<td>♂♂</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>2</td>
</tr>
<tr>
<td>Strijwara (Hypom.reloadData)</td>
<td>♂♂</td>
<td>♂♂</td>
<td>♂♂</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>2</td>
</tr>
<tr>
<td>Platystethus (s.str.) cornutus</td>
<td>♂♂</td>
<td>♂♂</td>
<td>♂♂</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>2</td>
</tr>
<tr>
<td>Carpelona (Tetraponera) signata</td>
<td>♂♂</td>
<td>♂♂</td>
<td>♂♂</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>2</td>
</tr>
<tr>
<td>Carpelona (s.str.) purpurae</td>
<td>♂♂</td>
<td>♂♂</td>
<td>♂♂</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>2</td>
</tr>
<tr>
<td>Tectyopara (s.str.) pilosa</td>
<td>♂♂</td>
<td>♂♂</td>
<td>♂♂</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>♂♂</td>
<td>♂♂</td>
<td>♂♂</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>2</td>
</tr>
<tr>
<td>Total ejemplares</td>
<td>♂♂</td>
<td>♂♂</td>
<td>♂♂</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td></td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>♂♀</td>
<td>2</td>
</tr>
</tbody>
</table>
Edita: O.A. PARQUES NACIONALES

NIPO: 311-00-031-2
ISSN: 0214-0896
Depósito legal: M-6860-1988
Imprime: Closas-Orcoyen, S.L.

La Revista *Ecología* no se responsabiliza de las opiniones que figuran en los trabajos de sus colaboradores.
Para la reproducción total o parcial de los trabajos publicados en *Ecología* será preciso solicitar la correspondiente autorización.

La suscripción a la Revista *Ecología* puede solicitarse a:
El importe de la suscripción anual es de 1.500 ptas. para España y 2.000 ptas. para el extranjero.