Gondwanian relicts and oceanic dispersal in a cosmopolitan radiation of euedaphic ground beetles

Carmelo Andújar a,b,⇑, Arnaud Faille c, Sergio Pérez-González d, Juan P. Zaballos d, Alfried P. Vogler a,b, Ignacio Ribera e

a Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
b Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
c Zoologische Staatssammlung München, Münchhausenstraße 21, 81247 Munich, Germany
d Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
e Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain

ABSTRACT

Anillini are a tribe of minute, euedaphic ground beetles (Carabidae) characterized by the loss of eyes, loss of wings and high levels of local endemism. Despite their presumed low dispersal, they have a nearly cosmopolitan distribution, including isolated islands such as New Zealand and New Caledonia. We used a time calibrated molecular phylogeny to test, first, if the tribe as currently understood is monophyletic and, second, whether the time of divergence is compatible with an early vicariant diversification after the breakup of Gondwana. We sequenced portions of 6 mitochondrial and 3 nuclear genes for 66 specimens in 17 genera of Anillini plus 39 outgroups. The resulting phylogenetic tree was used to estimate the time of diversification using two independent calibration schemes, by applying molecular rates for the related genus Carabus or by dating the tree with fossil and geological information. Rates of molecular evolution and lineage ages were mostly concordant between both calibration schemes. The monophyly of Anillini was well-supported, and its age was consistent with a Gondwanian origin of the main lineages and an initial diversification at ca. 100 Ma representing the split between the eyed Nesamblyops (New Zealand) and the remaining Anillini. The subsequent diversification, including the split of the Nearctic Anillinus and the subsequent splits of Palaearctic lineages, was dated to between 80 and 100 Ma and thus was also compatible with a tectonic vicariant origin. On the contrary, the estimated age of the New Caledonian blind Orthotyphlus at ca. 30 ± 20 Ma was incompatible with a vicariant origin, suggesting the possibility of trans-oceanic dispersal in these endogean beetles.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Soils have been described as one of the remaining biotic frontiers (André et al., 1994), harboring an astonishing amount of life that may hold more than 1/4 of species diversity on Earth (Decaëns et al., 2006). A poorly known portion of this diversity is found in the deep layers of the soil (Jeffery et al., 2010), a complex and heterogeneous environment characterized by the absence of light, a water-saturated atmosphere and buffered temperature fluctuations (Eisenbeis and Wichard, 1987). Species inhabiting this environment (euedaphics sensu Eisenbeis and Wichard, 1987; endogeans sensu Giachino and Vailati, 2010) show varying degrees of adaptation to the conditions underground, with a general trend to size reduction, depigmentation, shortening of extremities, loss of eyes and loss of flight capacity (Eisenbeis and Wichard, 1987; Gisin, 1943).

For many euedaphic arthropods, and particularly beetles, taxonomic studies have shown a clear pattern of high diversity and micro-endemivity. Illustrative cases are found within the Leptotyphlini (Staphylinidae; Fancello et al., 2009), Bothrideridae (Dajoz, 1977), Reicheini (Carabidae; Casale, 2009) and Anillini (Carabidae; Jeannel, 1963; Giachino and Vailati, 2011; Pérez-González and Zaballos, 2013; Sokolov and Kavaunagh, 2014; Giachino, 2015). Phylogenetic community analyses based on molecular data have also shown that the adaptation to the deep soil layers promotes community phylogenetic clustering and high levels of local endemicity (Andújar et al., 2015). In other groups such as

http://dx.doi.org/10.1016/j.ympev.2016.03.013
1055-7903/© 2016 Elsevier Inc. All rights reserved.
collombolans and annelids, thought to include few species with wider distributions, recent molecular work has also revealed high cryptic diversity and strong geographical structure (Cicconardi et al., 2013).

Despite this general trend to form geographically isolated entities, some euedaphic groups show transcontinental or even worldwide distributions when considering larger clades. This is the case of the endogean ground beetles of the tribe Anillini (subfamily Trechinae), which are distributed through all continents but Antarctica, including isolated islands such as Madagascar, New Zealand, New Caledonia, Hawaii, Galapagos, the Seychelles and some Mediterranean islands. In the last global taxonomic revision of Anillini, Jeannel (1963) divided the then 139 known species in two main “divisions” (Phanerodontes and Aphaenodontes) and 11 morphological lineages, a classification subsequently modified by Jeanne (1973) and extended to 12 lineages by Vigna-Taglianti (1973). Currently, approximately 520 species of Anillini are known (JPZ, unpublished data). All known Anillini are flightless, and only four species retain eyes, of which two belong to the genus Nesamblyops from New Zealand; the other two are Microdipnoides tshuapanus Basilewsky 1960 and Cryptortites scotti Jeannel 1950, both from central Africa and placed by Jeannel in the large lineage of Microtyphlus, distributed over most of Africa, Europe and Australia.

How the Anillini have reached their current distribution is intriguing. For other taxa with subterranean species and similar continent-wide distributions, such as the Molopini ground beetles (Casale and Ribera, 2008) or the Leptodirini cave beetles (Fressnedal et al., 2011), it has been shown that the traditionally recognized taxa were polyphyletic due to the inclusion of unrelated lineages exhibiting similar morphologies resulting from convergence. In the case of Anillini, Jeannel (1937, 1963) proposed the monophyly of the group and a Gondwanian origin, a proposal that has been generally accepted by other authors, although sometimes questioned (e.g. Erwin, 1982). Based on this hypothesis, the Anillini would have diversified following tectonic vicariance after the breakup of Gondwana, with subsequent dispersion only possible through temporary land bridges from sea level changes and tectonic movements or by overseas dispersion among continents and islands.

We conducted a molecular phylogenetic analysis of Anillini including 9 of the 12 main lineages proposed by Jeannel (1963) and Vigna-Taglianti (1973), and representatives of the American, Palaeartic, African, New Zealand and New Caledonian fauna, to test whether (i) the tribe Anillini as currently understood is monophyletic; (ii) the main lineages proposed by Jeannel form monophyletic entities; (iii) the estimated ages of divergence are compatible with a Gondwanian origin of Anillini and the vicariant diversification after the breakup of Gondwana; and (iv) the Mediterranean taxa and the species from New Zealand and New Caledonia show divergence times compatible with the tectonic scenario. Studying the phylogeny, biogeography and lineage ages in Anillini will provide a better understanding of the systematics and evolution of the group, and ultimately on the processes driving the high biodiversity of euedaphic mesofauna.

2. Material and methods

2.1. Sampling

We included sequences from 66 specimens of 50 species, covering 17 of the 68 described genera and nine of the 12 main lineages of Anillini (Jeannel, 1963; Vigna-Taglianti, 1973). These taxa include several representatives within each of the main groups of Anillini proposed by Jeannel (1937) (Scotodipnines and Anillines), Jeanne (1973) (Phanerodontes and Aphaenodontes) and subtribes proposed by Jeanne (1973) (Typhlocharina, Scotodipnina and Anillina). Most genera (11) are from the west Palearctic region (from the Iberian Peninsula and Morocco to Turkey), with further exemplars from USA, Mexico, Tanzania, New Caledonia and New Zealand. We newly sequenced 54 specimens from 14 genera, whereas sequences for the remaining taxa were retrieved from Genbank, including Nesamblyops from New Zealand. Thirty-eight additional taxa were included as outgroups, including Bembidini, Tachyini, Trechini, Zolini, Xystosomina and Pogonini, which represent major lineages within the subfamily Trechinae that includes Anillini. Idobates nebotii Español, 1966 (Carabidae, HARPALINAE, Zuphiini) was used to root the tree (Ribera et al., 2006; Hunt et al., 2007). Specimens were generally collected from soil samples using extraction methods (Berlese, 1905; Normand, 1909) or sifting forest litter and directly placed in absolute ethanol, either by the authors or provided by collaborators (see Tables S1 and S2 in Appendix S1 for details).

2.2. DNA extraction and sequencing

DNA was extracted non-destructively from whole specimens using Qagen extraction kits (Hilden, Germany). Voucher specimens and DNA aliquots are kept in the IBE (CSIC-UPF, Barcelona) and NHM (London). Four DNA fragments were PCR amplified and sequenced, including: (i) the 3’ end of the cox1 gene (≈753 bp); (ii) the 3’ end of the rnl gene plus the complete trnL and the 5’ end of nad1 (≈779 bp); (iii) a fragment of the SSU nuclear ribosomal gene (≈630 bp); and (iv) a fragment of the LSU nuclear ribosomal gene (≈1000 bp). PCRs were made using PuReTaq Ready-To-Go PCR beads (GE Healthcare, UK) or Biotaq Polymerase (Bioline, London, UK), with 39 cycles using 48–52°C as the annealing temperature. The primers used for each gene fragment are given in Table S3 in Appendix S1. Additional sequences for the above markers and for two additional gene fragments were retrieved from Genbank, including: (v) the 3’ end of cox1, trnl and the initial portion of cox2 (≈641 bp); and (vi) the nuclear internal transcriber spacer 2 (ITS2) (≈448 bp). Altogether, 203 new sequences were generated (194 for the ingroup) and 109 were obtained from public repositories (10 for the ingroup) (Andújar et al., 2011; Contreras-Díaz et al., 2007; Faille et al., 2010, 2013, 2012, 2011; Maddison and Ober, 2011; Maddison et al., 1999; Maddison, 2012; Ribera et al., 2006; Sokolov, 2007). Sequence accession numbers are provided in Table S1 in Appendix S1.

2.3. Alignment and dataset concatenation

Sequences were aligned using the online version of MAFFT 6.240 (Katoh and Toh, 2008a; Katoh et al., 2002), with the L-INS-i algorithm for the protein coding genes and Q-INS-I for ribosomal fragments (Katoh and Toh, 2008b). The correct translation to amino acids was checked in MEGA 6 (Tamura et al., 2013). Two datasets were generated: (a) the all taxa data set included all ingroup (Anillini) and outgroup (Trechinae + Idobates) taxa for the six gene fragments (105 specimens, 4570 nt); and (b) the ingroup dataset included cox1, trnl, SSU and LSU sequences for only the ingroup taxa (66 specimens, 3210 nt). The all taxa data set included some combined conspecific sequences from different studies (Table S1 in Appendix S1). The gene fragments cox1-trnL-cox2 and ITS2 were only sampled for the outgroup taxa of the all taxa data set.

2.4. Phylogenetic analyses

All phylogenetic and calibration analyses were conducted using the CIPRES Science Gateway (Miller et al., 2010). Data matrices
were analyzed with maximum likelihood (ML) and Bayesian inference (BI) phylogenetic methods. ML trees were obtained using RAxML 7.2.7 (Stamatakis, 2006). Data sets were partitioned by gene and the fragment for the protein-coding gene cox1 was additionally partitioned into two codon partitions, combining first and second codon positions (Andújar et al., 2012). An independent GTR +G model was applied to each data partition. For the analyses of the ingroup data set we rooted the trees according to the results of the all taxa dataset. The best scoring ML tree was selected among 100 searches on the original alignment with different randomized parsimony starting trees. Support values were obtained with 1000 bootstrap replicates (Felsenstein, 1985). BI was run in MrBayes 3.2.3 (Huelsenbeck et al., 2001). Combined data were partitioned by gene and codon position as before, and for each partition the optimal substitution model was selected using the Akaika information criterion (AIC) in jModelTest 2.1.7 (Darriba et al., 2012). BI consisted of two independent runs, each with three hot and one cold chain, for 20 million generations, whereby trees were sampled every 1000 generations. The standard deviation of split frequencies was checked to assess the convergence of results, as well as the mean and effective sampled size (ESS) of likelihood values computed with TRACER 1.6 (Rambaut et al., 2013). The 50% majority rule and strict consensus trees were calculated excluding 25% of the initial trees as a conservative burn-in, ensuring that the plateau in tree likelihood values had been reached. Trees were visualized using FigTree 1.4.2 (Rambaut, 2012), and node posterior probabilities were interpreted as support values.

2.5. Calibration analyses

We used Bayesian phylogenetic analyses in BEAST 1.8 (Drummond et al., 2012) to simultaneously estimate an ultrametric phylogenetic tree and ages of diversification. Two independent calibration schemes were used, based on rates of evolution for the genus Carabus (calibration scheme 1; applied to both the all taxa and the ingroup data sets) and fossil and geological information (calibration scheme 2; applied only to the all taxa data set).

Calibration scheme 1. We used as calibration priors the rates of molecular evolution obtained for the same DNA fragments (cox1, rrnl+trnl+nad1 and LSU genes) and analytical settings for the genus Carabus, which is the closest con-familial relative in the Carabidae with evolutionary rate estimates available for the studied genes (Andújar et al., 2014, 2012). A uniform function prior on the mean substitution rate was applied for each gene, with maximum and minimum bounds matching the 95% confidence interval of the rates obtained in Andújar et al. (2012).

Calibration scheme 2. We applied priors on the ages for three nodes: (i) the age of the origin of the genus Bembidion was restricted to a minimum age of 56.7 Ma (Uniform function: max 300, min 55.8) based on the fossil of bembidium cyanomelanicus Piton, 1940 collected in Menat (Auvergne, France) and dated from the Thanetian (58.7–55.8 Ma) (Behrensmeyer and Turner, 2013; Piton, 1940); (ii) the age of the node clustering the endemic species of Trechus from the volcanic island of Madeira (represented by T. cuspos Wollaston, 1854; T. flavomarginatus Wollaston, 1854 and T. decolor Jeannel, 1938) was restricted to a maximum age of 14 Ma (Uniform function: max 14, min 1) based on the age of emergence of the island (Conteras-Diaz et al., 2007); and similarly, the emergence of the island of La Gomera around 9.5 Ma ago was used as a maximum age for the colonization of the Trechus species from La Gomera (T. gomerensis Franz, 1986) and from the younger region of Anaga in Tenerife (T. cabrerai Jeannel, 1936); Uniform function: max 9.5, min 1) (Conteras-Diaz et al., 2007).

For each dataset and calibration scheme, analyses were conducted applying the best fitting model of substitution to each gene and codon position partition (cox1 fragment; combined first and second codon positions; Andújar et al., 2012). A Yule speciation prior was applied and analyses were run for 30 million generations sampling one tree every 5000 generations. In the molecular clock settings only gene partitions were considered, and three independent analyses were conducted under three alternative molecular clock hypotheses, applying (1) an uncorrelated lognormal (ULN) or (2) a strict clock (SC) to all genes, or alternatively (3) using an ULN for nuclear and a SC for mitochondrial genes. For each of these, two independent runs in BEAST were conducted. Alternative molecular clock settings were compared with Bayes factors as estimated with the stepping-stone and the path-sampling algorithms in BEAST (Baeele et al., 2013) and with the SHM estimator in TRACER 1.6. Consensus trees were estimated with TreeAnnotator (Drummond et al., 2012) discarding the 50% initial trees as a burn-in fraction, after checking ESS of likelihood, evolutionary rates and root age values, and ensuring that the tree likelihood values had reached a plateau. Posterior probabilities were considered as a measure of node support.

For the all taxa data set under the calibration scheme 1, Ildobates neboti was used to root the tree, whereas for the analyses on the calibration scheme 2, due to convergence problems a starting tree was used as a fixed topology only allowing for the estimation of branch lengths (by removing the operators arrowExchange, wideExchange, wilsonBalding, subtreeSlide). The consensus tree obtained from the analysis under the calibration scheme 1 showing the best Bayes Factor value was used as the fixed topology. All calibration analyses on the all taxa data set (for both calibration schemes) were duplicated with and without an additional minimum age prior of 136.4 Ma on the root, based on the oldest known fossil for the subfamily Harpalinae (included as outgroup) (Behrensmyer and Turner, 2013; Fujiyama, 1978). For the ingroup data set trees were rooted according to the results of the all taxa dataset. No other topological constraints were applied.

3. Results

The best fitting models of evolution as estimated in jModeltest for each gene fragment and data set alignment (all taxa data set: 105 taxa, 4570 bp; ingroup data set: 66 taxa, 3210 bp) are shown in Table 1. Trees obtained for the different datasets and phylogenetic methods were highly congruent, and the incomplete sampling for the cox1-trnl-coc2 and ITS2 gene fragments did not produce any obvious artefacts in the tree searches or the topologies obtained. For the all taxa dataset, all ML and Bayesian analyses with both MrBayes and BEAST consistently resulted in a polyphyletic Bembidini due to the distant position of the genera Sinechostichus and Erwiniana, and well supported monophyletic Trechina, Zolimi, Tachyini and Anillini, but with very weak support for the relationships among them and with the single representatives of Xystosomini and Pogonini (Figs. 1 and 2).

All analyses conducted on the all taxa dataset resulted in a monophyletic Anillini, with Nesamblyopus (clade P1) as sister to

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best fitting model of nucleotide change as estimated in jModeltest using the AIC criterion for the all taxa and the ingroup datasets.</td>
</tr>
<tr>
<td>All taxa dataset</td>
</tr>
<tr>
<td>cox1</td>
</tr>
<tr>
<td>cox1 (1st + 2nd positions)</td>
</tr>
<tr>
<td>cox1 (3rd positions)</td>
</tr>
<tr>
<td>rrnl + trnl + nad1</td>
</tr>
<tr>
<td>LSU</td>
</tr>
<tr>
<td>SSU</td>
</tr>
<tr>
<td>cox1 + trnl + cox2</td>
</tr>
<tr>
<td>ITS2</td>
</tr>
</tbody>
</table>
the remaining taxa. *Nesamblyops* was consequently used to root the trees of Anillini in all subsequent analyses without outgroups (*ingroup* data set). We also obtained highly consistent results for the internal relationships of Anillini between both datasets (Figs. 1 and 2; Figs. S1–S6 in Appendix S1). The North American *Anillinus + Serranillus* were found as a well supported clade (P2) as sister...
to the remaining Anillini. Within the latter, we found six well-supported clades (or single-species lineages) with poorly resolved relationships among them, corresponding to (i) *Geocharis* (P3); (ii) *Typhlocharis* (P4); (iii) *Iberanillus* (P5); (iv) *Rhegmatobius* (P6); (v) *Anillus* (P7); and (vi) a large clade (Clade A) including all ‘aphaenodontes’ (Jeannel, 1963) and *Geocharidius*. Lineages P5, P6 and P7 were recovered as a clade independently of the phylogenetic method and dataset, but always with weak support. Within clade A we found *Pseudanillus* (A1) as sister to the remaining taxa (Clade A2). Within clade A2, we found (i) a clade with *Parvocebus* (A2.1); (ii) a clade clustering *Geocharidius*, *Orthophythus* and *Pelonomites* (A2.2), only supported in the *all taxa* dataset and the Bayesian
inferences; and (iii) a supported clade (A2.3) including a monophyletic *Scotodipnus* + *Binaghites* (clade A2.3a), *Hypotyphlus* (A2.3b), and *Microtyphlus* (A2.3c) (Fig. 1).

Results from the 15 alternative calibration analyses (12 for the *all taxa* and 3 for the *ingroup* dataset) are summarized in Figs. 3 and 4 and Tables 2, S4 and S5 in Appendix S1. For the different calibration schemes and datasets, the ULN clock was always favoured, but representing only a minor improvement in the BF value over the combined application of SC and ULN to the mitochondrial and nuclear genes respectively (SC-ULN clock) (Table 2). The use of the SC for all genes always resulted in a major decrease of the BF value, accompanied by major differences in the estimates of both ages of diversification and rates of molecular evolution (Table 2). BF results were consistent among the estimation methods used (Stepping Stone, Path Sampling and Marginal Likelihood; Table S4 in Appendix S1).

For the *all taxa* dataset under the favoured ULN clock, both calibration schemes resulted in highly congruent results when the age of the root was constrained. Based on the calibration scheme 2, the time for the common ancestor of Anillini was estimated at 100.4 Ma (95% HPD: 70.4–134.5 Ma), representing the split between the fully eyed *Nesamblyops* from New Zealand and the remaining Anillini. The subsequent diversification into the main lineages P2, P3, P4, (P5 + P6 + P7) and A was dated to between 77.7 and 96.9 Ma (95% HPD: 53.5–129.8 Ma), and the split of *Pseudanillus* (A1) from the remaining *aphaenodontes* + *Geocharidius* (A2) was dated at 69.6 Ma (95% HPD: 47.7–91.7 Ma). The split of the New Caledonian *Orthotyphlus* was dated at 30.5 Ma (95% HPD: 9.9–53.3 Ma). Rates of molecular evolution estimated with the calibration scheme 2 for the genes *rrnL*, *ITS2* and *LSU* were very similar to those previously reported for the genus *Carabus* (Andújar et al., 2012) and used here as priors in the calibration scheme 1 (Table 3). On the other hand, the rate estimated for the gene *cox1* was higher than that reported in some recent studies (Andújar et al., 2012; Papadopoulou et al., 2010; see Section 4).

Ages of diversification and rates of molecular evolution obtained for the ULN and the SC-ULN clocks were similar (when other parameters were the same), with a large overlap on their distributions but higher variances for the ULN clock (Figs. 3 and 4). The alternative calibration schemes had an important effect on the results when the age of the root was not constrained, resulting in younger ages and higher evolutionary rates for scheme 2 (internal calibration points based on fossil and biogeographic information) than for scheme 1 (rates extrapolated from the ground beetle genus *Carabus*). Hence, the additional constraint of the root age based on the fossil information had the main effect of increasing the ages of diversification, lowering the rates of molecular evolution. This resulted in very similar ages and rates for both calibration schemes.

Calibration analyses conducted on the *ingroup* dataset estimated older ages for the diversification of the Anillini (Fig. 3). Nevertheless, the notable increment of the variance resulted in a large overlap with the ages obtained for the *all taxa* dataset.

4. Discussion

4.1. Are Anillini monophyletic?

From our results we can clearly conclude that Anillini is a monophyletic lineage with a trans-continental distribution of...
mostly endogean species. This is in agreement with the current treatment of the group and in contrast with other formerly recognized widespread taxa including subterranean lineages shown to be polyphyletic by recent molecular data, e.g. beetles in the tribe Molopini (Casale and Ribera, 2008) and Leptodirini (Fresneda et al., 2011).

The monophyly of the tribe Anillini was first proposed in the early studies of Jeannel (1937, 1963), and although since then it
has been rarely questioned, Erwin (1982) suggested that Anillini were most likely a grade within a related tribe (Tachyini), related to Lymnastis, Paratychys and other genera representing putatively early splits in the evolution of the lineage. Anillini are minute, depigmented, aperipterus and almost always eyeless ground beetles, usually separated from other closely related groups by characters which are not exclusive, such as the narrow and minute terminal segment of the palpi and the lack of recurrent stria at the apex of the elytra (Jeannel, 1963). These characters are considered to be prone to convergent evolution correlated with adaptation to the deep soil layers or a reduction in body size. The anophthalmia, depigmentation and lack of wings are equally found in organisms living in subterranean environments, or even in forest litter, and many other lineages show these traits among the Trechinae (Fallie et al., 2013).

The only diagnostic morphological character of Anillini, the widely opened and straight shape of the basal bulb of the aedeagus, has been recently found also in the tribe Lovriciini (Giachino et al., 2012; Giachino and Vailati, 2011; Pérez-González and Zaballos, 2013), demonstrating the lability of the character.

The morphology of the labial tooth of Anillini is more complex than initially considered, and we have identified four character states: (i) fully developed tooth; (ii) total absence of the tooth, (iii) tooth with different degree of development within a genus, or even within a single species; (iv) presence of a hyaline tooth, not fully visible with light microscopy. The latter situation could be problematic, since species reported as “toothless” may indeed have a hyaline labial tooth (Zaballos and Casale, 1997).

Some of the main lineages recovered are in good agreement with Jeannel’s Series, such as clades P1 (Series ‘Zeannius’), P2 (Series ‘Anillinus’) or P4 (Series ‘Typhlocharis’), but with some exceptions to the monophyly of Series ‘Geocharis’ (clade P3) and ‘Microtyphlus’ (nested within clade A). The sequencing of additional genera within the ‘Aphaenodontes’ will be key to further test the validity of these clades. Of particular interest are the oculated species from central Africa, which Jeannel (1963) placed without hesitation in the Series ‘Microtyphlus’.

4.2. Origin and diversification of Anillini: Gondwanian relicts or oceanic dispersal?

Our estimated age for the common ancestor of Anillini (around 103 Ma, in the middle Cretaceous) is early enough for a...
Nesamblyops, from the rest of the Anillini. Jeannel (1963) placed it on an ancient origin and a complex evolutionary history, involving both vicariance facilitated by plate tectonics and long distance colonisation events.

The basal split separated the endemic New Zealand genus *Nesamblyops* from the rest of the Anillini. Jeannel (1963) placed *Nesamblyops* into Series *Zeanillus*, which included only New Zealand representatives. *Nesamblyops* is one of the few Anillini with eyes, consistent with an early split of the lineage retaining the plesiomorphic state. The estimated age of 103 Ma (range 135–70 Ma) is consistent with a Gondwanian origin and the separation of New Zealand from the continent during the late Cretaceous, starting at around 83 Ma with the formation of the Tasman Sea (Neall and Trewick, 2008). Other non related genus within Anillini, *Pelonomites*, *Cryptorites*, and *Geocharidius* respectively, would have allowed the initial dispersion of the lineage, leading to subsequent local diversifications and multiple independent colonisations of the endogean environment. Erwin (1982) agreed in the need of a winged ancestor, but disagreed about the monophyly and age of the Anillini. The requirement of ancient ages for the origin of a monophyletic Anillini was one of the arguments for his proposal of their para- or polyphyle. Our results are suggestive of an ancient origin and a complex evolutionary history, involving both vicariance facilitated by plate tectonics and long distance colonisation events.

Different mechanisms have been proposed for the long distance colonization of minute soil organisms, most prominently within soil among roots of rafting vegetation that drift with oceanic currents (Fraser et al., 2011; Holzapfel and Harrell, 1968; Nikula et al., 2013). Passive or active aerial dispersion seems a less likely option, although the possibility of winged species within the Anillini (or among the ancestral species) cannot be dismissed entirely. Two genera from central Africa (*Cryptortyes* and *Microdipnodes*) that were unambiguously assigned to the *Microptylus* phyletic series by Jeannel (1963) maintain functional and even fully developed eyes, despite being wingless (no data is available about this character for *Microdipnodes*). The confirmation of the phylogenetic position of the eyed African genera within the *Microptylus* lineage would suggest a scenario where the evolutionary loss of eyes occurred multiple times independently as a result of the adaptation to life below ground. Molecular data on these taxa, together with further sampling of Southern hemispheric lineages including representatives of the Malagasy, Indian, South American and Australian faunas, will be key for further understanding the colonization routes of the Anillini.

Our conclusions are contingent on the estimations of the age of divergence of the main lineages of Anillini. There is an increased use of Bayesian dating methods that provide the opportunity to introduce priors on the ages of diversification of particular taxa and the rates of molecular evolution, and allow for the simultaneous optimization of the topology, the substitution rates and the time frame for the evolution of lineages (Drummond et al., 2006). This approach facilitates complex calibration analyses, but the results from the combination of different priors, and their effect on the topology and the estimated ages are not always well understood when using actual, rather than simulated data (Andújar et al., 2012; Duchêne et al., 2014; Ho and Duchêne, 2014). We have addressed these uncertainties by exploring the effect of different combinations of calibration priors (constraints in diversification ages vs. constraints in substitution rates) and molecular clock priors (strict vs. uncorrelated lognormal clocks). Our results were in general consistent with previous studies, showing a marked effect of the calibration schemes and priors in the final results. In spite of this variation, and with the exception of the analyses conducted with the unfavoured SC in the calibration scheme I, all calibration analyses were compatible with a Gondwanian origin of Anillini. Similarly, calibration analyses resulted in estimates for the split of *Orthotyphlus* to be more recent than the initial tectonic separation of New Caledonia, with only the ingroup dataset resulting in confidence intervals old enough for a tectonic vicariant origin of *Orthotyphlus*. In general, we found a trend toward older age estimates when the rates of molecular evolution were constrained (using rates estimated in related groups of
Coleoptera), and younger age estimations when only recent calibration points were used. The need to include age priors for the root or some deep nodes to increase the accuracy of the calibration has already been suggested (Duchêne et al., 2014), probably to reduce the errors arising from the saturation of the model of nucleotide substitution. Our results here point in the same direction. The use of an additional age constraint to the root resulted in highly congruent results between analyses conducted with alternative calibration constraints (diversification ages vs. substitution rates), also increasing the consistency of the estimated rates of molecular evolution with that of other studies. Specifically, the calibration analyses based on age constraints (including that of the root) resulted in rates of molecular evolution consistent with those reported for the ground beetle genus Carabus for the same gene fragments (Andújar et al., 2012), and this calibration also was consistent with other previous studies in Coleoptera (Cieslak et al., 2014; Papadopoulou et al., 2010; Ribera et al., 2010). An exception was the rate estimate for the cox1 gene when only prior constraints on the ages for the selected nodes (Calibration Scheme 2) were used, which was unrealistically high. As it has been shown in previous studies, Bayesian partitioned analyses may have difficulties in the branch length estimation of some variable genes (Brown et al., 2010; Marshall, 2010), and thus we interpreted this cox1 rate as potentially an analytical artefact resulting from the codon position partitioned model. Additional analyses where the cox1 gene was not subjected to codon-position partitioning resulted in a rate of 0.0126 substitutions per site per million years per lineage (subs/s/Ma/l), in good agreement with previous studies, including the rate we applied in the Calibration Scheme 1 (Table 3). Similar higher than expected rate values have been observed for the nad5 gene in Andújar et al. (2012) and for the cox1 gene in Pons et al. (2010). Despite these discrepancies, the accumulation of calibration analyses with congruent estimations using independent age priors for different lineages points to some generalities in the evolutionary rates of Coleoptera, even if a standard strict molecular clock can probably be discarded.

5. Author contributions

CA. designed the study. CA, AF, IR, JZP, SPC contributed to the sampling, CA and AF conducted the laboratory work. CA, IR and APV designed the analyses. CA conducted the analyses. CA and AF drafted the manuscript, which was reviewed and approved by all authors.

Acknowledgments

We thanks all collectors in Table S2 for providing material for the study, Rocío Alonso (IBE Barcelona) and Alex Aitken (NHM London) for their support in the molecular laboratory, and two anonymous Referees for valuable comments. This study was partially supported by the NERC grant NE/M021955.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.ympev.2016.03.013.

References

Andújar, C., Cieslak, A., Fresneda, J., Ribera, I., 2014. Life-history specialization was not an evolutionary constraint on the species richness of Coleoptera (Cieslak et al., 2014; Papadopoulou et al., 2010; Ribera et al., 2010). An argument against the Madagascan, South African and Australian Pterostichini? Biogeographia 29, 32–44.
Español, I., 1974. Sobre la nueva ordenación propuesta por el Dr. C. L. Jeannel de los Anillini euro-mediterráneos con especial referencia a la representación ibérica de la tribu (Col. Trechinae). In: IV Simposium Bioespelogico, pp. 5–11.

C. Andújar et al. / Molecular Phylogenetics and Evolution 99 (2016) 235–246

